An anonymous reader shares an opinion piece from Scientific American: Permafrost covers 24 percent of the Earth’s land surface, and the soil constituents vary with local geology. Arctic lands offer unexplored microbial biodiversity and microbial feedbacks, including the release of carbon to the atmosphere. In some locations, hundreds of millions of years’ worth of carbon is buried. The layers may still contain ancient frozen microbes, Pleistocene megafauna and even buried smallpox victims. As the permafrost thaws with increasing rapidity, scientists’ emerging challenge is to discover and identify the microbes, bacteria and viruses that may be stirring. Some of these microbes are known to scientists. Methanogenic Archaea, for example metabolize soil carbon to release methane, a potent greenhouse gas. Other permafrost microbes (methanotrophs) consume methane. The balance between these microbes plays a critical role in determining future climate warming. Others are known but have unpredictable behavior after release… It is clear that the warmer we make the Arctic, the weirder it will get, as temperatures at the surface become more extreme and thawing deepens. With the coalescence of microbes reawakening from the deep and surface conditions unprecedented in human history, it is challenging to assess risks accurately without improved Arctic microbial datasets. We should pay attention to both known unknowns, such as antibiotic-resistant bacteria, and unknown unknowns, including the potential risks from the resurrection of ancient and poorly described viral genomes from Arctic ice by synthetic biologists. For all of these reasons, we must come up with guidelines for future Arctic research. As travel through the region increases, the likelihood of pathogen export and import rises as well. The planetary protection guidelines that space agencies follow to prevent interplanetary contamination can provide a framework for how microbial investigation can safely continue. Biosurveillance measures must be put into place to protect communities in the Arctic and beyond. As the Arctic continues to transform, one thing is clear: as climate change warms this microbial repository during the 21st century, the full range of consequences is yet to be told.

Read more of this story at Slashdot.


Read more